This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

REACTION OF ARSENIC(III) OXIDE, ARSENOUS AND ARSENIC ACIDS WITH THIOLS

Spyros V. Serves^a; Yiannis C. Charalambidis^a; Demetrios N. Sotiropoulos^a; Panayiotis V. Ioannou^a Department of Chemistry, University of Patras, Patras, Greece

To cite this Article Serves, Spyros V. , Charalambidis, Yiannis C. , Sotiropoulos, Demetrios N. and Ioannou, Panayiotis V.(1995) 'REACTION OF ARSENIC(III) OXIDE, ARSENOUS AND ARSENIC ACIDS WITH THIOLS', Phosphorus, Sulfur, and Silicon and the Related Elements, 105: 1, 109 - 116

To link to this Article: DOI: 10.1080/10426509508042053 URL: http://dx.doi.org/10.1080/10426509508042053

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

REACTION OF ARSENIC(III) OXIDE, ARSENOUS AND ARSENIC ACIDS WITH THIOLS†

SPYROS V. SERVES, YIANNIS C. CHARALAMBIDIS, DEMETRIOS N. SOTIROPOULOS and PANAYIOTIS V. IOANNOU*

Department of Chemistry, University of Patras, Patras, Greece

(Received March 28, 1995; in final form April 11, 1995)

Arsenic(III) oxide and arsenous acid in water or aqueous ethanolic solutions react, at room temperature, with a variety of lipophilic and hydrophilic thiols giving quantitatively triaryl and trialkyl trithioarsenites, (ArS)₃As and (RS)₃As. Aqueous solutions of arsenic acid react with certain thiols giving quantitatively mixtures of trithioarsenites and disulfides, RSSR. These reactions may help towards the elucidation of the biochemistry of arsenous and arsenic acids.

Key words: Arsenic(III) oxide, arsenous acid, arsenic acid, triaryl trithioarsenites, trialkyl trithioarsenites.

INTRODUCTION

The reaction of arsonic and arsinic acids, RAsO(OH)₂, R₂AsO(OH), with thiols, R'SH, to give RAs(SR')₂ and R₂AsSR', respectively¹ attracted wide interest because it was implicated in the mode of action of organoarsenic chemotherapeutic agents^{2,3} and in the detoxification of arsenic via methylation-reduction steps.⁴

There are only a few isolated reports on the reaction of As₂O₃ and H₃AsO₃ with thiols. Thus, As₂O₃ reacted with thioglycolic acid⁵ and thiophenol⁶ and H₃AsO₃ reacted with glutathione,⁷ cysteine and substituted thiophenols⁸ to give trialkyl and triaryl trithioarsenites, (RS)₃As and (ArS)₃As. These reactions did not attract⁹ the preparative significance they deserved and the chemistry of trithioarsenites remains largely unexplored.⁸⁻¹¹ Finally, the literature^{2,12,13} leaves one with the impression that arsenic acid is unreactive towards thiols, although its reduction by methyl thioglycolate¹⁴ and glutathione⁷ has recently been reported.

Herein we report on the reactions of As₂O₃, H₃AsO₃ and H₃AsO₄ with lipophilic and hydrophilic monothiols which have preparative significance and, probably, biochemical implications.

RESULTS AND DISCUSSION

Arsenic(III) oxide reacted in ethanolic or in aqueous solutions with lipophilic and hydrophilic thiols giving quantitatively thioesters of arsenous acid:

$$As_2O_3 + 6RSH \rightarrow 2As(SR)_3 + 3H_2O \tag{1}$$

When the product was insoluble, e.g. 1 and 9, the supernatant gave negative

[†]Dedicated to the memory of Professor A. Galinos.

nitroprusside test¹⁵ for free thiol but when the product was soluble, e.g. 4, 5 and 10, sampling gave positive nitroprusside test indicative of an equilibrium:

$$As(SR)_3 + H_2O \rightleftharpoons HOAs(SR)_2 + RSH$$
 (2)

The water soluble products (except 4) were precipitated by adding acetone. The esters 1 and $4 \cdot 1/2H_2O$ were previously obtained^{5,6} by reacting As_2O_3 with the thiols without solvent.

The reaction of H_3AsO_3 with lipophilic thiols, e.g. thiophenol, 2-naphthalenethiol and ethyl thioglycolate was very fast and usually complete in 30 min. The reaction was pH dependent: with thiophenol as substrate an optimum pH \sim 7 was found based on the yield of 1 (90–95%) while at pH 14 and 10 the yields were 8 and 61%, respectively. Since the p K_1 of H_3AsO_3 is 9.29¹⁶ and that of aromatic thiols is 6–8¹⁷ it seems that the reaction is favoured by the unionized forms of the reagents, Equation (3).

$$As(OH)_3 + 3RSH \rightarrow As(SR)_3 + 3H_2O$$
 (3)

This observation corroborates the mechanism proposed by Chadaeva et al. 11

The stoichiometry of the reaction was found to be as in Equation (3) using excess PhSH. When excess As(III) was used the reaction did not stop at any intermediate compound, (HO)₂AsSPh or HOAs(SPh)₂, but As(SPh)₃ was quantitatively (based on the PhSH used) obtained. The driving force for such a behaviour probably is the insolubility of the final ester, As(SPh)₃.

Arsenous acid did not react with methanolic solutions of 2-mercaptothiazoline, 2-mercapto-1-methylimidazole, and 2-mercaptobenzimidazole probably because the compounds are in their keto form.

The reaction of alkaline H_3AsO_3 with hydrophilic thiols, e.g. thioglycolic acid, 3-mercaptopropionic acid, L-cysteine, and L-glutathione, was analogous to that of As_2O_3 except that the sodium salts 5, 7 and 11 (but see Reference 7), and the zwitterion, 8, were obtained based on the pK values of the —COOH group(s)¹⁸ for thioglycolic acid, cysteine and glutathione. The product with L-cysteine, 8, precipitated during the reaction while the other products 5, 7 and 11 were precipitated by acetone. The produce with DL-penicillamine, if formed after 1 h reaction, could not be precipitated.

With L-cysteine as substrate the yield of precipitated 8 was found to be pH dependent: optimum pH range was 8-4 (yields 88-77%) while at pH 12 and 10 the yields were 40 and 76%, respectively. At pH 7 the stoichiometry was found to be 1:3 and with excess As(III) the reaction did not stop at any intermediate compound. With excess L-cysteine 2 mM H₃AsO₃ gave visible needles after 1 h at RT.

All the prepared water soluble trithioarsenites, when dissolved in water, gave positive test for free thiol probably because of equilibrium (2). The trithioarsenites were not hygroscopic, or only slightly so, and (except 3) were apparently stable towards oxidation by air. Compound 3 was very unstable in air giving As₂O₃ and the disulfide (SCH₂COOEt)₂. Such an instability was previously noted^{9,19} for tripropyl and tributyl trithioarsenites while triaryl trithioarsenites are very stable.¹⁹ The UV and IR spectra of 1 and 8, respectively have been published⁸ and the stretching frequencies in the IR of (RS)₃As and (ArS)₃As have been assigned.¹⁹

The AsS—C stretching in 1 and 2 was very strong, for 4 was medium strong, for 5, 8 and 9 was very weak, while for 3, 6, 7, 10 and 11 was too weak for positive assignment. The 1 H-NMR spectrum of 4 gave a sharp singlet at δ 3.75 clearly separated from the singlet of thioglycolic acid at δ 3.70. The 1 H-NMR spectrum of 10 has been published.

The usual methods for the preparation of trithioarsenites is the reaction between AsCl₃ and RSNa or RSH + base (see Reference 9 for a summary of the methods used). The reaction of As₂O₃ or H₃AsO₃ with aliphatic

and aromatic thiols in aqueous or alcoholic solutions is the simplest way to prepare trithioarsenites, and except for some isolated cases,⁵⁻⁸ it has not been used. The yields are quantitative and the purity of the products excellent.

The reaction can be used for the separation of cysteine from other amino acids and derivatives, e.g. penicillamine or glutathione. Arsenous acid can be used as a blocking group for thiols. Deblocking can be achieved by pH adjustment (alkaline^{8,15} or acidic⁸) while oxidative deblocking by O_2 at pH < 7,⁸ or H_2O_2/H_2O or $I_2/H_2O/O$ organic solvent leads to disulfide and arsenic acid. The latter can be removed from aqueous solutions using magnesia mixture.

Kamai's group^{9,10} has studied some reactions of trithioarsenites, and we observed that "transthiolation" of the water soluble trithioarsenites, e.g. 4 or 11, takes place with a thiol which gives an insoluble product.

$$As(SR)_3 + 3PhSH \xrightarrow{H_2O} As(SPh)_3 \downarrow + 3RSH$$
 (4)

Although thiophenol reacted "instantaneously" with H_3AsO_3 , it reacted slower with AsO_4^{3-} according to:

$$H_3AsO_4 + 5RSH \rightarrow As(SR)_3 + RSSR + 4H_2O$$
 (5)

The rate was pH dependent being slow at pH = pK_3 = 11.53, fast at pH = pK_2 = 6.98 and fastest at pH = pK_1 = 2.22.²⁰ This behaviour is in agreement with the statement²¹ that arsenic acid is a weak oxidizing agent, but more strongly oxidizing in acid than in alkaline solution. Ethyl thioglycolate slowly reduced Na₂HAsO₄ (magnesia mixture test) in H₂O/EtOH 1:1. The reaction was slow because the NaOH which was produced at the early stages converted the Na₂HAsO₄ to the less reactive Na₃AsO₄. The slowness of the reductions of alkaline arsenic acid and the instability of As(SCH₂COOMe)₃ have previously been noted.¹⁴

Hydrophilic thiols, e.g. thioglycolic acid, 3-mercaptopropionic acid, L-cysteine and L-glutathione, quantitatively reduced arsenic acid (magnesia mixture test). The reduction at various initial pHs is best followed by ¹H-NMR because the signals due to trithioarsenite, e.g. 5 and 10,⁷ are clearly separated from those due to their corresponding disulfides. From the thiols examined penicillamine did not reduce Na₂HAsO₄ at 2:1 molar ratio after 2 h, while at 5:1 molar ratio 62% reduction occurred after 9 days. Penicillamine quantitatively reduced benzylarsonic acid to 12 after 7 days.

Mechanism for the reduction of arsonic acids to RAs(SR')₂ by thiols have been proposed by Barber,²² Cohen *et al.*,¹⁵ and Cullen *et al.*^{23,24} They differ in the structure of the intermediate, being RAs(OH)₂, RAs(SR')₄ and RAs(OH)₂ via RAs(SR')₂(OH)₂, respectively.

For the reaction of arsenic acid with thiophenol and L-cysteine the reduction step, $As(V) \rightarrow As(III)$, was slower compared to the reaction of H_3AsO_3 with the same thiol as judged from the time required for the appearance of the insoluble products, 1 and 8. The reduction step was also pH dependent, as discussed above, being faster in acidic solutions. The reaction does not stop at the H_3AsO_3 stage as judged from the reaction of Na_2HAsO_4 with PhSH at 1:2 molar ratio where an equimolar mixture of 1 and PhSSPh was produced (TLC analysis). This result differs from that obtained with glutathione⁷ where the products were H_3AsO_3 and oxidized glutathione.

Arsenic acid or suitable arsenoxides can be used for site directed disulfide (intrachain or inter-chain) formation in peptide synthesis.²⁵

Our results may help towards the elucidation of some aspects of the poorly understood^{4,7,26,27} biochemistry of arsenous acid (e.g. entrance into a cell may occur via transthiolation) and arsenic acid (e.g. unreactivity^{3,13} towards enzymes may be due to isolated crucial —SH group(s)).

EXPERIMENTAL

2-Naphthalenethiol (Merck), thioglycolic acid, reduced L-glutathione free acid (Serva) and the other thiols (Aldrich) were used without further purification. Ethyl thioglycolate (b.p. 65°C/15 mm Hg) and sodium thioglycolate monohydrate⁵ (m.p. 220°C dec.) were prepared from thioglycolic acid. Benzylarsonic acid was prepared from sodium arsenite and benzyl chloride. Nitroprusside tests in buffered with saturated NaHCO₃ solutions gave cherry-red colour for all water soluble thiols except penicillamine which developed a blue-green colour in 30 s. Test for AsO₄³ was done with magnesia mixture. The As was determined after wet digestion with conc. H₂SO₄ and H₂O₂. TLC, using silica gel H (Merck), were run on microslides. Visualization was effected by I₂ vapors or by spraying with 35% H₂SO₄ and charring. IR and H-NMR spectra were obtained on a Perkin Elmer model 16PC FT-IR and a Varian model T-60A spectrometers. Optical rotations were measured on a Schmidt and Haensch Polatronic Universal polarimeter using a 5 cm cell.

All reactions were done at room temperature. The products were dried in vacuo over P2O5.

Reactions of As₂O₃ with thiols

a) With thiophenol

As₂O₃ (0.5 mmol) reacted for 20 h with thiophenol (3 mmol) in 5 ml of 95% EtOH to give, 1, (100%) as a white solid pure by TLC (petroleum ether, R_f 0.13). 1 is soluble in CH₂Cl₂, CHCl₃, CCl₄, AcOEt and insoluble in H₂O, EtOH, Et₂O and petroleum ether. M.p. 93–5°C [lit.^{8.9} 95°C]. IR (KBr): 748 vs and 690 s. ¹H-NMR (CDCl₃) δ : 7.4 (broad s, C_6H_5).

b) With ethyl thioglycolate

As₂O₃ (0.5 mmol) dissolved completely after 20 h in a solution of 3 mmol of ethyl thioglycolate in 4 ml of absolute EtOH. Removal of the solvent gave an oil and traces of a white solid (As₂O₃ by IR) which were separated by dissolving the oil in Et₂O. The product 3 (91%) was a colourless oil, pure by TLC (Et₂O/hexane 1:1, R_f 0.60), soluble in Et₂O and CHCl₃. Nitroprusside test: weakly positive. IR: 2982 m, 1732 s, 1290 m, 1124 m, 1026 m. ¹H-NMR (CDCl₃) & 1.30 (t, J = 7 Hz, 9H, CH₃), 3.60 (s, 6H, SCH₂), 4.25 (q, J = 7 Hz, 6H, CH₂CH₃). The ester 3 after 12 h at RT gave a solid (As₂O₃ by IR) and an oil which by TLC (Et₂O/hexane 1:1) was a mixture of 3 and (SCH₂COOEt)₂, R_f 0.75.

c) With thioglycolic acid

1.45 mmol of As_2O_3 and 8.70 mmol of thioglycolic acid in 5 ml of degassed H_2O were stirred for 48 h. The product did not precipitate by adding Me_2CO , MeCN or dioxane. Evaporation and drying gave 4 (98%) as a white amorphous hard solid which was recrystallized from boiling Et_2O by adding petroleum ether (98% recovery). 4 is soluble in Me_2CO , MeOH, H_2O , slightly soluble in boiling Et_2O and insoluble in $CHCl_3$, MeCN. Nitroprusside test: positive. M.p. $111-4^{\circ}C$. \mathcal{A} s: found 21.28, calcd for $C_6H_9AsO_6S_3$ · $1/2H_2O^5$ 20.97%. IR(KBr): 3013 broad s, 1694 s, 1418 s, 1274 s, 1196 s, 898 m, 876 m, 776 m, 662 m. ^{1}H -NMR (D_2O) δ : 3.75 (s, 6H, CH_2).

d) With sodium thioglycolate

As₂O₃ (0.3 mmol) dissolved after 2 days stirring in a solution of 3 mmol of HSCH₂COONa · H₂O in 1 ml of degassed H₂O. The product 5 was precipitated (100%) by adding Me₂CO. 5 is soluble in H₂O and insoluble in Me₂CO, Et₂O, CHCl₃, MeOH, DMF and DMSO. Nitroprusside test: positive. M.p. 238–240°C dec. % As: found 18.08, calcd for $C_6H_6AsO_6S_3Na_3$ 18.10%. IR (KBr): 1584 s, 1400 s, 1224 m, 774 w. ¹H-NMR (D₂O) δ : 3.60 (s, 6H, CH₂).

e) With 3-mercaptopropionic acid

To 4.85 mmol of As_2O_3 a solution of 29.10 mmol of 3-mercaptopropionic acid in 30 ml of degassed H_2O was added and stirred for 2 days. The insoluble white product, **6**, was centrifuged and dried. Yield 91%. **6** is soluble in Me_2CO , Et_2O , MeOH and DMSO, slighty soluble in H_2O and insoluble in $CHCl_3$.

It dissolves in aqueous NaHCO₃ giving positive nitroprusside test. M.p. $102-3^{\circ}$ C. %As: found 19.00, calcd for C₉H₁₅AsO₆S₃ 19.23%. IR (KBr): 3024 broad m, 1696 s, 1426 m, 1400 m, 1256 s, 1202 m, 920 m. ¹H-NMR (DMSO-d₆): 2.50(t, J = 6 Hz, 6H, CH₂COOH), 2.95, (t, J = 6 Hz, 6H, SCH₂).

f) With DL-penicillamine

To a solution of 3 mmol of DL-penicillamine in 10 ml of degassed H_2O 0.5 mmol of As_2O_3 was added, purged with N_2 and stirred for 7 days. Centrifugation, washing with acetone (1 × 4 ml) and drying gave the product 9 (80%) as a white solid. 9 is sparingly soluble in H_2O , MeOH, DMF and DMSO and soluble in warm DMSO (from which does not precipitate on cooling) and in aqueous $NaHCO_3$ giving positive nitroprusside test. M.p. $140-2^{\circ}C$ dec. %As: found 14.18, calcd for $C_{15}H_{30}AsN_3O_6S_3$ 14.43%. IR (KBr): 2972 broad s, 1620 s, 1576 s, 1494 s, 1388 s, 1122 m, 778 w.

g) With L-glutathione

0.2 mmol of As_2O_3 dissolved in a solution of 1.2 mmol of reduced L-glutathione free acid in 4 ml of degassed H_2O after 4 days stirring under N_2 . Addition of 20 ml of Me_2CO and leaving at $+4^{\circ}C$ for 48 h gave a sticky white precipitate. This was triturated with 20 ml of Me_2OH to give a crystalline solid (100%). The product, 10, is soluble in H_2O and in warm DMSO, sparingly soluble in warm DMF and insoluble in MeCN, MeOH, Et_2O , CHCl₃ and Me_2CO . Nitroprusside test: positive. M.p. $147-150^{\circ}C$ dec. %As: found 6.78, calcd for $C_{30}H_{48}AsN_9O_{18}S_3$ 7.54%. $[\alpha]_D^{20} - 10^{\circ}$ (c 0.4, H_2O). IR(KBr): 3280 broad s, 1652 vs, 1532 vs, 1408 s, 1228 s. ¹H-NMR (D_2O) & 2.3 (m, 6H, glu β -CH₂), 2.6 (m, 6H, glu γ -CH₂), 3.4 (m, 6H, AsSCH₂), 4.1 (m, 12H, gly CH₂, glu CH, cys CH).

Reactions of H₃AsO₃ with thiols

a) With thiophenol

The pH of a solution of Na_3AsO_3 (0.25 mmol) in 1 ml of H_2O was adjusted to 8 (phenolophthalein) with HCl and a solution of thiophenol (0.75 mmol) in 1 ml of 95% EtOH was added. After 2 h, centrifugation, washing with H_2O (2 × 1 ml) and absolute ethanol (1 × 1 ml) gave the product, 1, (93%), pure by TLC.

b) With 2-naphthalenethiol

Prepared as in 1 above in quantitative yield. It can be recrystallized from petroleum ether (100 ml/g): recovery 70%. The product, 2, is soluble in CH_2CI_2 , $CHCI_3$, CCI_4 , Et_2O , Me_2CO , sparingy soluble in petroleum ether and insoluble in EtOH and H_2O . TLC (petroleum ether, R_f 0.15). M.p. 89–91°C. % As: found 13.45, calcd for $C_{30}H_{21}AsS_3$ 13.57%. IR (KBr): 820 vs, 800 vs, 738 vs. ¹H-NMR (CDC I_3) δ : 7.8 (broad m, $C_{10}H_7$).

c) With ethyl thioglycolate

3 was obtained in 84% yield by the same procedure used to prepare 1.

d) With thioglycolic acid

0.453 mmol of As_2O_3 and 2.718 mmol of NaOH were dissolved in 0.5 ml of H_2O and 2.718 mmol of H_2O was added. Heat was evolved from the neutralization of the thioglycolic acid from the Na_3AsO_3 . After 1 h Me_2CO (22 ml) was added to precipitate the product (HSCH₂COONa is, however, precipitated under the same conditions), which after centrifugation gave the product as the sodium salt, 5 (97%).

e) With 3-mercaptopropionic acid

Prepared in 90% yield by the same procedure used to prepare 5. The product $7 \cdot H_2O$ is soluble in H_2O , MeOH and insoluble in Et_2O , Me_2CO . Nitroprusside test: positive. M.p. 210°C dec. %As: found 16.10, calcd for $C_9H_{12}AsO_6S_3Na_3 \cdot H_2O$ 15.82%. IR (KBr): 3406 broad m, 1564 s, 1432 m, 1400 m, 1312 w, 1276 w, 668 w. ¹H-NMR (D_2O): 2.60 (t, J = 6 Hz, 6H, C H_2COONa), 3.05 (t, J = 6 Hz, 6H, SC H_2).

f) With L-cysteine

To an aqueous solution of Na₃AsO₃ (0.25 mmol/ml), adjusted to pH 8, an aqueous solution of L-cysteine (0.75 mmol/ml) was added. After 1 h, centrifugation and washing with H₂O (1 × 2 ml) and EtOH (1 × 2 ml), gave 8 (94%). The zwitterion, 8, is soluble in 1 M NaOH and 0.5 M HCl, and insoluble in H₂O, EtOH, DMF, DMSO, Me₂CO, CHCl₃. Nitroprusside test: weakly positive. M.p. 238-240°C dec. [lit.⁸ 235 and 245°C]. [α] $_{D}^{20}$ +48° (c 0.5, 0.5 M HCl) [lit.⁸ +38° (c 0.5, 0.5 M HCl)]. IR (KBr): similar to that published.⁸

g) With DL-penicillamine

Under the same conditions, as with cysteine, after 1 h reaction no precipitate was obtained by adding Me₂CO, MeOH or EtOH. When to this solution was added an equivalent amount of PhSH in EtOH 82% (PhS)₃As was obtained.

h) With L-glutathione

To a solution of As_2O_3 (1 mmol) and NaOH (6 mmol) dissolved in 1 ml of H_2O a solution of 6 mmol of L-glutathione in 15 ml of H_2O was added and stirred for 2 h. Acetone (70 ml) was added and the system was left at $+4^{\circ}C$ for 2 days. The precipitated gum was triturated with 50 ml of MeOH and the white, crystalline solid weighed 2.239 g (100.5% as $11 \cdot 3H_2O$). The product $11 \cdot 3H_2O$ is soluble in H_2O and insoluble in MeCN, CH_2Cl_2 , AcOEt, MeOH, DMSO and DMF. It does not precipitate from H_2O with MeCN, DMSO or DMF. Nitroprusside test: positive. M.p. $183-5^{\circ}C$ dec. $[a]_{20}^{20}+10^{\circ}$ (c 0.4, H_2O). % As: found 6.59, calcd for $C_{30}H_{42}AsN_9O_{18}S_3Na_3 \cdot 3H_2O$ 6.73%. IR (KBr): 3444 broad s, 1646 s, 1595 s, 1538 s, 1402 m. Its 'H-NMR spectrum resembled that published.

Transthiolations

When an aqueous solution of 5 or 11 was treated with 3 mol of thiophenol per mole of ester in EtOH, 1 was obtained in 85-90% yields. When 0.5 ml of a 0.2 M aqueous solution of 10 was treated with 0.5 ml of a 0.6 M aqueous solution of cysteine no precipitation of 8 was observed after 15 min at RT. Addition of 0.3 mmol thiophenol in EtOH gave after 15 min at RT 71% of 1.

Reactions of H₃AsO₄ with thiols

a) With thiophenol

Using 5 mol of PhSH in EtOH per mole of H_3AsO_4 at pH equal to pK_1 , pK_2 and pK_3 of H_3AsO_4 we obtained, after 24 h, a mixture of the products [1 + PhSSPh] in yields of 76, 64 and 61%, respectively. TLC (petroleum ether: $(PhS)_3As\ R_f\ 0.20$, PhSSPh $R_f\ 0.59$). With 2 mol of PhSH per mole Na_2HAsO_4 after 4 h at RT a mixture of 1 plus PhSSPh was obtained.

b) With ethyl thioglycolate

Na₂HAsO₄ (0.25 mmol) in 1 ml of H₂O and 1.25 mmol of ethyl thioglycolate in 1 ml of absolute EtOH were stirred for 2 days. Centrifugation gave a white solid (40 mg) which was a hydrated salt of arsenic acid (0.17 mmol AsO₄³⁻ by magnesia mixture precipitation) and a supernatant from which 52 mg of 3 plus (SCH₂COOEt)₂ were isolated as a colorless oil.

c) With thioglycolic acid

Na₂HAsO₄ was quickly (1-2 h) and quantitatively reduced by thioglycolic acid in D₂O (1:5 molar ratio) giving 5 (singlet at δ 3.70) and disulfide (singlet at δ 3.60) while HSCH₂COONa gave a singlet at δ 3.35. No precipitate with magnesia mixture was obtained when the reduction was done at initial pH 2.2, 7.0 and 11.5 for 24 h.

d) With 3-mercaptopropionic acid

3-Mercaptopropionic acid quantitatively reduced AsO₄³⁻ (magnesia mixture test) at initial pH 2.2, 7.0 and 11.5 in 24 h. At pH 2.2 the products, 6 and (SCH₂CH₂COOH)₂, were quantitatively precipitated while at pH 7.0 and 11.5 we obtained less than the expected weight because of the solubility of salts of 6 and (SCH₂CH₂COOH)₂.

e) With L-cysteine

L-Cysteine and arsenic acid reacted as in the case of 3-mercaptopropionic acid.

f) With DL-penicillamine

DL-Penicillamine slowly reduced Na₂HAsO₄ in D₂O (5:1 molar ratio). The singlet (δ 3.70) diminished and a new singlet appeared at δ 3.68. The singlet at δ 1.55 moved to 1.65, the singlet at δ 1.45 diminished and a new singlet appeared at δ 1.40. After 9 days magnesia mixture test showed 62% reduction had taken place.

g) With L-glutathione

Using 1.25 mmol of reduced glutathione monosodium salt per 0.25 mmol of H_3AsO_4 , after 3 h reaction addition of acetone precipitated 429 mg (95%) of a mixture of products (11·3H₂O and hydrated oxidized glutathione sodium salt), $[\alpha]_D^{20} - 35^\circ$ (c 0.4, H₂O).

Reaction of benzylarsonic acid with DL-penicillamine

To a solution of 2 mmol of DL-penicillamine in 7 ml of degassed H_2O 0.5 mmol of benzylarsonic acid was added, sealed under N_2 and stirred for 7 days. The solid arsonic acid slowly dissolved giving the product 12 as a white solid. Centrifugation and washing with acetone gave a solvate which after drying gave the product $12 \cdot 2H_2O$ as a white powder (232 mg, 94%). The product is insoluble in H_2O and MeOH, sparingly soluble in DMF and moderately soluble in DMSO. M.p. $175-8^{\circ}C$ dec. %As: found 14.79, calcd for $C_{17}H_{27}AsN_2O_4S_2 \cdot 2H_2O$ 15.06%. IR (KBr): 3416 broad s, 3062 s, 2964 s, 1634 vs, 1508 vs, 1384 vs, 1334 s. The supernatant after evaporation and drying gave 170 mg of a white solid [mp 143-5°C dec., IR (KBr): qualitatively similar to $12 \cdot 2H_2O$] which is hydrated disulfide of penicillamine.

ACKNOWLEDGEMENTS

We thank the General Secretariat of Research and Technology, Ministry of Industry, Energy and Technology for financial support, and Dr. H. B. F. Dixon, University of Cambridge, for stimulating discussions.

REFERENCES

- G. O. Doak and L. D. Friedman, "Organometallic Compounds of Arsenic, Antimony, and Bismuth," Wiley, New York, 1970, p. 79.
- 2. H. Eagle and G. O. Doak, *Pharmacol. Rev.*, 3, 107 (1951).
- R. M. Johnstone, "Sulfhydryl Agents: Arsenicals," in "Metabolic Inhibitors," R. M. Hochster and J. H. Quastel, eds., Pergamon Press, New York, 1962, Vol. 2, Chap. 20, p. 99.
- 4. W. R. Cullen and K. J. Reimer, Chem. Rev., 89, 713 (1989).
- 5. A. Rosenheim and I. Davidsohn, Z. Anorg. Allg. Chem., 41, 231 (1904).
- 6. S. C. Chaudhry, R. K. Mahajan, S. S. Bhatt and N. Sharma, Indian J. Chem., 31A, 279 (1992).
- 7. N. Scott, K. M. Hatlelid, N. E. Mackenzie and D. E. Carter, Chem. Res. Toxicol., 6, 102 (1993).
- 8. H.-J. Bielig, G. Lützel and A. Reidies, Chem. Ber., 89, 775 (1956)
- 9. N. A. Chadaeva, G. K. Kamai and G. M. Usacheva, J. Gen. Chem. U.S.S.R., 36, 718 (1966).
- N. A. Chadaeva, G. K. Kamai, K. A. Mamako and M. P. Osipova, J. Gen. Chem. U.S.S.R., 42, 120 (1972).
- N. A. Chadaeva, K. A. Mamakov, R. R. Shagidullin and G. K. Kamai, J. Gen. Chem. U.S.S.R., 43, 825 (1973).
- 12. T. B. B. Crawford and I. D. E. Storey, Biochem. J., 38, 195 (1944).
- 13. H. A. Schroeder and J. J. Balassa, J. Chron. Dis., 19, 85 (1966).
- (a) K. Dix, C. J. Cappon and T. Y. Toribara, J. Chromatogr. Sci., 25, 164 (1987); (b) K. Schoene,
 J. Steinhanses, H.-J. Bruckert and A. König, J. Chromatogr., 605, 257 (1992).
- 15. A. Cohen, H. King and W. I. Strangeways, J. Chem. Soc., 3043 (1931).
- A. E. Martell and R. M. Smith, "Critical Stability Constants," Plenum, New York, 5, 409-410 (1982).
- 17. J. March, "Advanced Organic Chemistry," Wiley, New York, 1970, 3rd ed., p. 221.
- "Data for Biochemical Research," R. M. C. Dawson, C. Elliott, W. H. Elliott and K. M. Jones, eds., Oxford University Press, Glasgow, 1969, 2nd ed., pp. 460, 21, 27.
- 19. T. B. Brill and N. C. Cambell, Inorg. Chem., 12, 1884 (1973).
- I. M. Kolthoff, E. B. Sandell, E. J. Meehan and S. Bruckenstein, "Quantitative Chemical Analysis," MacMillan, London, 1969, 4th ed., p. 1144.
- J. D. Smith, "Arsenic, Antimony and Bismuth," in "Comprehensive Inorganic Chemistry," J. C. Bailar, Jr., H. J. Emeléus, R. Nyholm and A. F. Trotman-Dickenson, eds., Pergamon Press, Oxford, 1973, vol. 2, p. 581.
- 22. H. J. Barber, J. Chem. Soc., 1921 (1929).
- 23. W. R. Cullen, B. C. McBride and J. Reglinski, J. Inorg. Biochem., 21, 179 (1984).
- 24. W. R. Cullen, B. C. McBride and J. Reglinski, J. Inorg. Biochem., 21, 45 (1984).
- 25. E. E. Büllesbach, Kontakte (Darmstadt), (1), 21 (1992)
- 26. O. M. Ni Dhubhghaill and P. J. Sadler, Structure and Bonding, 78, 131 (1991).
- 27. J. P. Bucket and R. Lauwerys, Biochem. Pharmac., 37, 3149 (1988).
- 28. A. J. Quick and R. Adams, J. Am. Chem. Soc., 44, 805 (1922).
- 29. A. I. Vogel, "Textbook of Quantitative Inorganic Analysis," Longman, London, 1979, p. 498.
- W. W. Scott and N. H. Furman, "Standard Methods of Chemical Analysis," van Nostrand, London, 1939, 5th ed., pp. 67, 115.